欢迎来到大同市百灵鸟教育培训官方网站! 关于我们 | 联系我们

网站首页 > 高中辅导 > 数学

高中辅导
联系我们

大同市百灵鸟课堂

联系人:张校长

手机号码: 13835246221

公司地址: 一部:大同市春华园12号楼1单元1702

官网:http://www.dtblnjy.com/



数学

高中数学有哪些特点

1、知识的抽象性大

在初中学习的“函数”的基础上,高一又要学习“集合”、“对应”、“映射”等更为抽象的知识。高一的立体几何也削弱了直观性而突出了抽象性和空间的想象能力。这就是说思维要从直观,经验型向抽象,理论型过渡。

2、知识的密度增大

由于年龄的增长,接受能力、理解能力也在提高。同时高中数学教材的内容多而杂,这就决定了高中数学每节课的内容较初中时要多,即密度加大了。教师在教法上也随之有所变化。初中时教师常常把知识掰开揉碎地细讲,同时还选相当数量的习题去巩固这一知识;而在高中却常常是在新知识的开始阶段,例题即有一定的坡度。尤其强调知识的“以旧带新”和“横向,纵向的沟通、联系”。一节课下来,似乎是听懂了,但一遇到作业常常感到知识的运用不熟练,思路不通畅。似乎总感到新知识没有完全掌握,更新的知识又接踵而来。

3、知识的独立性大

初中知识的系统性是较严谨的,平面几何尤其如此,这个系统给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。因此,平面几何的知识使人长久不忘,记得清,用得上。但高中的数学却不同了,除了立体几何、解析几何有个相对明确的系统(与平面几何相比也不成体统),代数、三角的内容具有相对的独立性。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点,否则,综合运用知识的能力必然会欠缺。

如何对高中数学进行系统的复习

数学具有很强的逻辑性和系统性,打好基础相当重要。复习时,不仅要记住并理解每部分的概念、公式;而且关键在于能够准确、灵活地运用这些公式解题;注意使用范围、条件;还要能综合运用,熟练计算,提高速度。

数学是一门系统性很强的学科,因而对它的复习应把握三个原则:一要重视基础,提高能力;二要举一反三,积累经验;三要查缺补漏,吸取教训。

数学的备考重点在于巩固基础和掌握解题技巧。因此复习可分为两个阶段。一是逐个知识点复习,巩固基础阶段;这一阶段的要点是:复习落实双基;解题规范,训练思维;掌握方法,运用思想;重视运算,提高能力;掌握技巧,提高速度。二是精选习题,提高解题技能阶段。在逐个知识点复习过程中,要紧抓课本,深刻理解和掌握各种数学概念、定理、性质、公式、法则以及各部分知识间的内在联系和规律,并进行归纳、类比,达到沟通、串联,形成合理的认识结构及知识网络。复习题选择要紧扣大纲,要具有典型性、综合性。要有利于双基化的掌握和巩固,也要利于能力的提高。同时,探索“一题多解”和“多题一解”是培养创造性思维及综合运用能力的重要途径。

具体来说,对基础知识、基本技能、基本方法的复习,应立足于巩固、熟练、综合。

(1)将相近、易混的基础知识,进行横向比较以达到准确理解和掌握知识的目的。

(2)及时、认真地做好基础知识的查漏补缺,通过做相关习题或以前练习试卷中解错的题,找出自己知识和技能上的薄弱环节,然后有针对性地进行复习和巩固。

(3)通过综合性的练习,使基础知识、基本技能和方法得到巩固。要注重数学与生产生活以及相关学科的联系,提高数学的综合应用能力。熟悉各种不同题型的特点和常用解法及求解要求。

提高能力要通过综合运用数学知识、数学思想方法,分析、解决问题能力的训练来实现。

(1)要挖掘知识之间的内在联系,形成知识网络。立足于高中数学的整体,挖掘各章之间的横向联系,形成知识的横向网络。

(2)重视数学基本思想、方法的掌握和运用。在做每一道综合练习题时,都要有意识地运用数学思想促使问题由已知向未知转化,由繁向简转化,寻找出由已知向未知的通道,切忌盲目性。

(3)通过解题实践,提高综合运用数学知识分析、解决问题的能力。在求解综合题时,应首先搞清楚题中所涉及的各知识点的概念及相关知识,回忆求解(证)该种类型的习题的常规解法,确定求解(证)的关键和难点,然后,以主要精力去探索解决难点的方法。

高考必考的有哪些

1.函数

函数是贯穿中学数学的一条主线,近几年对函数的考察既又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性(奇偶性、单调性、周期性、对称性)与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。

2.三角函数

三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。

3.立体几何

承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。

4.数列与

数列与是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。

5.解析几何

直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。


Powered by 大同市百灵鸟教育培训 All right reserved